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Introduction: In this exposition, the notion of linear hyperdoc-

trine is revisited through the study of categories of comodules

indexed by coalgebras (Paré - Grunenfelder).
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Linear Hyperdoctrines



A C-indexed category Φ is by definition a pseudo-functor

Φ : Cop → Cat

.

The category C is referred as the base of the C-indexed category

Φ and for each C ∈ C the category Φ(C) is called the fibre of Φ

at C.

Notation: Φ(−) = (−)∗
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Therefore it consists of:

• categories Φ(C) for each C ∈ C,

• functors Φ(f) for each morphism f : J → I of C,

• natural isomorphism αg,f : Φ(g)Φ(f)⇒ Φ(fg) for every mor-

phism f : J → I, g : K → J in C

• natural isomorphism β : Φ(idC)→ idΦ(C) for every C ∈ C.

These natural isomorphisms need to satisfy some obvious coher-

ence conditions.
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if f : J → I, g : K → J and h : M → K then

Φ(h)Φ(g)Φ(f)
1hαg,f

//

αh,g1f

��

Φ(h)Φ(fg)

αh,fg

��

Φ(gh)Φ(f) αgh,f
// Φ(fgh)

where αg,f : Φ(g)Φ(f)⇒ Φ(fg) is a natural isomorphism.
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And if f : J → I then

αf,id = 1fβ : Φ(f)Φ(id)→ Φ(f)idΦ(C)

where β : Φ(idC)⇒ idΦ(C) is a natural isomorphism.
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Definition 1. A C-indexed functor F : Φ→ Ψ of C-indexed cate-

gories consists of functors: F (C) : Φ(C)→ Ψ(C) for every C ∈ C,

such that for each f : D → C, Ψ(f)F (C) ∼= F (D)Φ(f) i.e., there

is a natural isomorphism γf : Ψ(f)F (C)⇒ F (D)Φ(f) for each f .

Φ(C)
F (C)

//

Φ(f)

��

Ψ(C)

Ψ(f)

��

Φ(D)

γf

99rrrrrrrrrrrrrrrrrrrrrrrrrrrr

F (D)
// Ψ(D)

subject to some coherence condition.
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Also there is the notion of indexed natural transformation.
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Two basic examples. Given a category C:

• Φ : Setop → Cat, Φ(I) = CI for α : J → I define Φ(α) as

follows: if {Ai}i∈I ∈ CI then Φ(α)({Ai}i∈I) = {Aα(j)}j∈J

• a functor F : C → D between categories define an indexed

functor: F (I) : Φ(I)→ Ψ(I) by F (I)({Ai}i∈I) = {F (Ai)}i∈I.
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Given a category C:

• Φ(I) = C/I and Φ(α) : C/I → C/J is given by the pullback:

P //

Φ(α)(a)
��

A

a
��

J α
// I
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Definition 2. A linear hyperdoctrine is specified by the following

data:

- a category B with binary product and terminal object (also a

C.C.C.) where there is an object U which generates all other

objects by finite products, i.e., for every object B ∈ B there

is a n ∈ N with B = Un (object=Types, morphism=terms)

- A B-indexed category, Φ : Bop → L, where L is the category of

intuitionistic linear categories. (object φ ∈ Φ(A)=attributes

of type A, morphisms f ∈ Φ(A)= deductions).
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- For each object I ∈ B we have functors ∃I , ∀I : Φ(I × U) →
Φ(I) which are left, right adjoint to the functor Φ(πI) :

Φ(I) → Φ(I × U), i.e., ∃I a Φ(πI) a ∀I. Moreover, given

any morphism f : J → I in B the following diagram

Φ(I × U)
∀I //

Φ(f×1U)

��

Φ(I)

Φ(f)

��

Φ(J × U) ∀J
// Φ(J)

conmutes. This last requirement is called Beck-Chevalley

condition.
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Linear Categories
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Definition 3. A monoidal category, also often called tensor cate-
gory, is a category V with an identity object I ∈ V together with a
bifunctor ⊗ : V × V → V and natural isomorphisms ρ : A⊗ I

∼=→ A,

λ : I ⊗ A
∼=→ A, α : A ⊗ (B ⊗ C)

∼=→ (A ⊗ B) ⊗ C, satisfying the
following coherence commutativity axioms:

A⊗ (I ⊗B)

1⊗λ &&NNNNNNNNNNNNNNN

α // (A⊗ I)⊗B

ρ⊗1xxppppppppppppppp

A⊗B
and

A⊗ (B ⊗ (C ⊗D))

α

��

α // (A⊗B)⊗ (C ⊗D) α // ((A⊗B)⊗ C)⊗D

α

��

(A⊗ ((B ⊗ C)⊗D) α
// (A⊗ (B ⊗ C))⊗D



Definition 4. A symmetric monoidal category consists of a monoidal

category (V,⊗, I, α, ρ, λ) with a choosen natural isomorphism σ :

A ⊗ B
∼=→ B ⊗ A, called symmetry, which satisfies the following

coherence axioms:

A⊗B σ //

id $$HHHHHHHHHHHH B ⊗A
σ

zzvvvvvvvvvvvv

A⊗B

A⊗ I σ //

ρ
&&LLLLLLLLLLLLLLL I ⊗A
λ

��

A

and

A⊗ (B ⊗ C)

1⊗σ
��

α // (A⊗B)⊗ C σ //C ⊗ (A⊗B)

α

��

A⊗ (C ⊗B) α // (A⊗ C)⊗Bσ⊗1// (C ⊗A)⊗B
commute.
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Definition 5. A closed monoidal category is a monoidal category

V for which each functor − ⊗ B : V → V has a right adjoint

[B,−] : V → V:

V(A⊗B,C) ∼= V(A, [B,C])

.
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Definition 6. A monoidal functor (F,mA,B,mI) between monoidal

categories (V,⊗, I, α, ρ, λ) and (W,⊗′, I ′, α′, ρ′, λ′) is a functor F :

V → W equipped with:

- morphisms mA,B : F (A)⊗′F (B)→ F (A⊗B) natural in A and

B ,

- for the units morphism mI : I ′ → F (I)
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which satisfy the following coherence axioms:

FA⊗′ (FB ⊗′ FC)

α′

��

1⊗′m//FA⊗′ F (B ⊗ C) m //F (A⊗ (B ⊗ C))

Fα

��

(FA⊗′ FB)⊗ FCm⊗
′1//F (A⊗B)⊗′ FC m //F ((A⊗B)⊗ C)

FA⊗′ I ′ ρ
′

//

1⊗′m
��

FA

FA⊗′ FI m //F (A⊗ I)

Fρ

OO I ′ ⊗′ FA

m⊗′1
��

λ′ //FA

FI ⊗′ FAm
//F (I ⊗A)

F (λ)

OO
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A monoidal functor is strong when mI and for every A and B

mA,B are isomorphisms. It is said to be strict when all the mA,B

and mI are identities.

Definition 7. If V and W are symmetric monoidal categories

with natural maps σ and σ′, a symmetric monoidal functor is a

monoidal functor (F,mA,B,mI) such that satisfies the following

axiom:

FA⊗′ FB σ′ //

m
��

FB ⊗′ FA
m

��

F (A⊗B)
F (σ)

//F (B ⊗A)
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Definition 8. A monoidal natural transformation θ : (F,m) →
(G,n) between monoidal functors is a natural transformation θA :

FA→ GA such that the following axioms hold:

FA⊗′ FB m //

θA⊗′θB
��

F (A⊗B)

θA⊗B
��

GA⊗′ GB n
//G(A⊗B)

I ′
mI//

nI !!CC
CC

CC
CC

C FI
θI

��

GI
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Definition 9. A monoidal adjunction

(V,⊗, I)
(F,m)

//

(W,⊗′, I ′)
(G,n)
⊥oo

between two monoidal functors (F,m) and (G,n) consists of an

adjunction (F,G, η, ε) in which the unit η : Id ⇒ G ◦ F and the

counit ε : F ◦G⇒ Id are monoidal natural tranformations.
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Proposition 1 (Kelly). Let (F,m) : C → C′ be a monoidal functor.

Then F has a right adjoint G for which the adjunction (F,m) a
(G,n) is monoidal if and only if F has a right adjoint F a G and

F is strong monoidal.
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Since we have that C′(FA,B) ∼= C(A,GB) then there is a unique

nA,B and nI such that:

F (GA⊗GB)
F (nA,B)

//

m−1
GA,GB

��

FG(A⊗′ B)

εA⊗B

��

FGA⊗′ FGB εA⊗εB
//A⊗′ B

FI
F (nI)//

m−1
I ""FFFFFFFFFFFFFFFFFFFF FGI ′

εI′

��

I ′

Then using the adjunction we check that this candidates satisfy

the definition.
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Definition 10 (Benton). A linear-non-linear category consists of:

(1) a symmetric monoidal closed category (C,⊗, I,()

(2) a category (B,×,1) with finite product

(3) a symmetric monoidal adjunction:

(B,×,1)
(F,m)

//

(C,⊗, I)
(G,n)
⊥oo .
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Proposition 2. Every linear-non-linear category gives rise to a

linear category. Every linear category defines a linear-non-linear

category, where (B,×,1) is the category of coalgebras of the

comonad (!, ε, δ).
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Coalgebras and Comodules
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Definition 11. A coalgebra C over a field K is a vector space C

over a field K together with K-linear maps ∆ : C → C ⊗ C and

ε : C → K satisfying the following axioms:

A

∆
��

∆ //A⊗A
1⊗∆

��

A⊗A ∆⊗1//A⊗A⊗A
and

A

∆
��

1

''PPPPPPPPPPPPPPPPPPPPPP
∆ //A⊗A

1⊗ε
��

A⊗A ε⊗1 //A

27



Let (A,∆A, εA) and (B,∆B, εB) be two coalgebras. A K-linear

map f : A → B is a morphism of coalgebras when the following

diagrams are commutative:

A

∆
��

f
//B

∆
��

A⊗A f⊗f
//B ⊗B

and

A
εA

$$IIIIIIIIIIIIII

f
//B
εB

��

K
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In this talk we consider cocommutative coalgebras:

C ∆ //

∆
##FFFFFFFFFFFFFFFFFFF C ⊗ C

σ

��

C ⊗ C
where σ(a ⊗ b) = b ⊗ a is the twist map. Because we want to

consider a category with finite product.
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The terminal object is K and the unique morphism is ε.

The finite product is given by the tensor:

If (A,∆A, εA) and (B,∆B, εB) are two coalgebras then:

(A,∆A, εA)× (B,∆B, εB) = (A⊗B,∆A⊗B, εA⊗B)

where ∆A⊗B = (1⊗ σ ⊗ 1)(∆A ⊗∆B) and εA⊗B = εA ⊗ εB.
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Projection maps:

π1 : (A,∆A, εA)× (B,∆B, εB)→ (A,∆A, εA)

given by:

π1 = 1⊗ εB

π2 : (A,∆A, εA)× (B,∆B, εB)→ (A,∆B, εB)

given by:

π1 = εA ⊗ 1

and mediating arrow:

< f, g >= (f ⊗ g)∆C if f : C → D and f : C → E.
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Also:

A⊗− a Hom(A,−).

i.e.,CoCoalg is a cartesian closed category.
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Let (D,∆, ε) be a coalgebra. A subspace S ⊆ D is a subcoalgebra

when ∆(S) ⊆ S ⊗ S.

If {Si}i∈I is a family of subcoalgebras of C then
∑
i∈I Si is a

subcoalgebra.

Then Coalg has equalizers:

if f : C → D and g : C → D we consider the largest subcoalgebra

E ⊆ Ker(f − g) i.e.,

E =
∑
S⊆Ker(f−g) S where S subcoalgebra, and the inclusion map

i : E → C.
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Therefore we have pull-backs.

If f : A→ C and g : B → C then:

E

p1

��4
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

4

p2

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

e
##FFFFFFFFFFFFFFFFFFF

A⊗B

π1

��

π2
//B

g

��

A
f

//C
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Definition 12. Let (C,∆, ε) be a coalgebra. A right C-comodule
M over a field K is a vector space M over a field K together with
K-linear maps ρ : M →M ⊗ C satisfying the following axioms:

M

ρ

��

ρ
//M ⊗ C

1⊗∆
��

M ⊗ C ρ⊗1
//M ⊗ C ⊗ C

and

M

ρ
��

∼=
((PPPPPPPPPPPPPPPPPPPPPPPP

M ⊗ C 1⊗ε //M ⊗ K



Let (M,ρM) and (N, ρN) be two comodules. A K-linear map

f : M → N is called a morphism of comodules if the following

diagram is commutative:

M

ρM

��

f
//N

ρN

��

M ⊗ C f⊗1
//N ⊗ C

Notation: MC
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The cofree C-comodule:

If (C,∆, ε) is a coalgebra and V a K−vector space then V ⊗ C
becomes a right C-comodule with

ρ = 1⊗∆ : V ⊗ C → V ⊗ C ⊗ C
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Cosemisimple coalgebras, completely reducible comodules
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Definition 13. A coalgebra C is called simple if C 6= 0 and it has

no proper subcoalgebras. A coalgebra C is called cosemisimple

if it is a direct sum of simple subcoalgebras.

A comodule C is said to be irreducible if V 6= 0 and it has no

proper subcomodules. A comodule is called completely reducible

if V = 0 or V is a direct sum of irreducible subcomodules.
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Proposition 3. • Every simple coalgebra is finite dimensional.

• Every coalgebra is sum of finite dimensional subcoalgebras.
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Proposition 4. For a given coalgebra C the following assertions
are equivalent:

a) C is cosemisimple

b) C is sum of simple subcoalgebras

c) If D is any subcoalgebra of C then there exists a subcoalgebra
E of C such that C = D ⊕ E

d) Every subcoalgebra of C is cosemisimple

e) Every finite dimensional subcoalgebra of C is cosemisimple
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Proposition 5. • Every irreducible comodule is finite dimen-

sional.

• Every comodule is sum of finite dimensional subcomodules.
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Proposition 6. For a given comodule V the following assertions
are equivalent:

a) V is completely reducible

b) V is sum of irreducible subcomodules

c) If W is any subcomodule of V then there exists a subcomod-
ule Z of C such that V = W ⊕ Z

d) Every subcomodule of V is completely reducible

e) Every finite dimensional subcomodule of V is completely re-
ducible
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Theorem 1. Given a coalgebra C the following are equivalent:

• C is cosemisimple

• every C comodule is completly reducible
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Indexed categories by coalgebras
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We consider an C-indexed category of comodules

Φ : Coalgop → Cat

given by Φ(C) =C M.

Notation: CM = V ectC the category of left C-comodules indexed

by the coalgebra C.

Finite products and equalizers exist in V ectC and are those of

vector spaces.
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Let φ : D → C be a morphism of coalgebras, we consider the

functor φ∗ : V ectC → V ectD determined by the following equalizer:

E e //D ⊗M ∆⊗1M//

1D⊗ρ
&&MMMMMMMMMMMMMMMMMMMMMMMMMMMM D ⊗D ⊗M

1D⊗φ⊗1M

��

D ⊗ C ⊗M

i.e., φ∗(M,ρ) = E on object and

by the universal property of equalizer on arrows, in which all

the coactions considered above come from the cofree comodule

structure except for E which has the restriction of the cofree

coaction of D ⊗M .
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So we define a pseudofunctor: Φ : Coalgop → Cat given by

Φ(C) = V ectC, Φ(φ) = φ∗ i.e., (φψ)∗ ∼= ψ∗φ∗, 1∗C
∼= 1V ectC.
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For each φ : C → D, φ∗ : V ectD → V ectC has a left adjoint∑
φ ` φ∗;

∑
φ : V ectC → V ectD given by

∑
φ(V, v) = (V, (φ⊗idV )v).

V
v−→ C ⊗ V φ⊗idV−→ D ⊗ V.
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Proposition 7. Let πC : D⊗C → C, πD : D⊗C → D be projection

maps in the category Coalg. Then π∗C : V ectC → V ectD⊗C and

π∗D : V ectD → V ectD⊗C preserves coequalizers.

Also we have explicit formulas:

π∗C(M,ρ) = (D ⊗M,ρ′)

where ρ′ is

D ⊗M ∆⊗ρ→ D ⊗D ⊗ C ⊗M σ→ D ⊗ C ⊗D ⊗M

and analogously π∗C.

50



For every φ : C → D the functor φ∗ : V ectD → V ectC preserves

coproducts, i.e.,

φ∗(⊕i∈I(Ci, ρi)) = ⊕i∈Iφ∗(Ci, ρi)

for arbitrary I but in general do not preserve coequalizers.

The last proposition implies that

π∗C π∗D

preserves colimits and by special adjoint functor theorem has a

right adjoint.
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V ectC symmetric monoidal closed category
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Lemma 1. If C is a cocommutative coalgebra, the category

V ectC is a symmetric monoidal category.

The tensor in V ectC is defined as follows:

take C-comodules (V, v), (W,w) and consider the following equal-

izer:

E e //V ⊗W
idV⊗w //

τv⊗idW
//V ⊗ C ⊗W (1)

i.e., E = (V, v)⊗C(W,w) and the coaction is given by the universal

property where

(V ⊗W, v ⊗ idW ) and (V ⊗ C ⊗W, v ⊗ idC ⊗ idW ).
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E

ρV⊗W

��

e //V ⊗W

v⊗1

��

idV⊗w //

τv⊗idW
//V ⊗ C ⊗W

v⊗1

��

C ⊗ E idC⊗e //C ⊗ V ⊗W
idC⊗idV⊗w//

idC⊗τv⊗idW
//C ⊗ V ⊗ C ⊗W

(2)

since C ⊗− preserves equalizers and the unit is given by

I = (C,∆C).
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Lemma 2. If C is a cocommutative coalgebra, the monoidal

category (V ectC,⊗C, C) is closed if and only if C is cosemisimple.
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CoalgC cartesian category
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The category CoalgC = Coalg/C (slice category) defined as fol-

lows:

• objects are morphisms of coalgebras with cocommutative

codomain in C; we denote by (φ) the morphism of coalgebras

φ : D → C when it is thought as an object in CoalgC,

• if φ : D → C and ψ : E → C are morphisms of coalgebras,

morphisms f : (φ)→ (ψ) correspond to coalgebra morphisms

f : D → E such that ψ ◦ f = φ;
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Lemma 3. If C is a cocommutative coalgebra, the category
CoalgC is a cartesian category.

Proof. The existence of finite products and equalizers in Coalg

guarantees the existence of pullbacks in this category, that in-
duce a cartesian structure on CoalgC.
We have that (φ1) × (φ2) = (φ), where φ is defined by the fol-
lowing pullback in Coalg:

D u //

v

��

φ

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
D1

φ1

��

D2 φ2
//C.

Moreover, the unit object is (idC).
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Monoidal adjunction: (UC,m) a (RC, n)
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The functor UC : CoalgC → V ectC takes the object (φ), i.e.,

φ : D → C to the comodule (D, d) where d : D → D ⊗ C is the

coaction defined by d = (φ ⊗ idD) ◦∆D admits a right adjoint:

UC a RC.
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Lemma 4. The functor UC : CoalgC → V ectC is strong monoidal.

Proof. It is clear that UC((idC)) = (C,∆), so UC preserves the

units.

We will prove now that

UC((φ)× (ψ)) = UC(φ)⊗C UC(ψ)

.

Take φ1 : (D1,∆1, ε1)→ (C,∆, ε), and

φ2 : (D2,∆2, ε2)→ (C,∆C, εC) two morphisms of coalgebras.
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We recall the diagram defining the product (φ) = (φ1)× (φ2):

D u //

v

��

φ

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
D1

φ1

��

D2 φ2
//C.



Note that UC(Di) = (Di, di) for i = 1,2 and UC(D) = (D, d)

where d = (φ⊗idD)◦∆, d1 = (φ1⊗idD1
)◦∆1, d2 = (φ2⊗idD2

)◦∆2.

We will prove that (D, d) = (D1, d1) ⊗C (D2, d2), in other words

that D-with a suitable morphism d- is the equalizer in V ect of

the following parallel pair and that d is effectively ρD1⊗CD2
(with

the notation of Lemma 2), i.e.,

D e //D1 ⊗D2

idD1
⊗d1

//

τd2⊗idD2

//D1 ⊗ C ⊗D2 (3)
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Idea of the proof:

1-First observe that the parallel pair above can be though in

Coalg. We prove first that the coalgebra D-with the morphism

of coalgebras (u⊗ v) ◦∆ : D → D1⊗D2 is the equalizer in Coalg.

2-Now, as U preserves equalizers of the coreflexive pairs, we

have that {D, (u ⊗ v)∆} is the equalizer in V ect of the parallel

pair above. (Note that the pair is coreflexive for idD1
⊗ εC⊗idD2

is a common retraction in Coalg.)

3-It is easy to prove that d is the desired coaction, i.e. that
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the following diagram commutes:

D
(u⊗v)◦∆

//

d

��

D1 ⊗D2

d1⊗idD2
��

C ⊗D idC⊗((u⊗v)◦∆)
//C ⊗D1 ⊗D2



φ∗ has left adjoint
∑
φ. But in general is not the case that φ∗

and −⊗C A preserve coequalizers.

We want to study conditions to obtain right adjoints:

φ∗ a Πφ and −⊗C A a homC(A,−)
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Definition 14. we said that a C-comodule (V, ρ) is coflat when

the functor

−⊗C V : V ectC → V ectC

preserves epis.

66



Proposition 8. Let (V, ρ) be a C-comodule. The following propo-

sitions are equivalent:

• (V, ρ) is coflat.

• V ⊗C − : V ectC → V ectC has a right adjoint homC(V,−) :

V ectC → V ectC.
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Proposition 9. Let φ : V →W be a coalgebra map. The follow-

ing propositions are equivalent:

• (V, (id⊗ φ)∆) C-comodule is coflat.

• φ∗ : V ectW → V ectV has a right adjoint Πφ : V ectV → V ectW .
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Beck condition. It turns out that since we have
∑
φ a φ∗ a Πφ and∑

φ satisfies that condition then Πφ also satisfies Beck condition

whenever it exists:

A ϑ //

φ

��

B

ψ

��

C η
//D

is a pullback then

69



V ectB
ϑ∗ //

Πψ

��

V ectA

Πφ

��

V ectD η∗
//V ectC

commutes.
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