Linear Hyperdoctrines and comodules.

Mariana Haim, Octavio Malherbe

July 2016. Realizabilidad en Uruguay Piriápolis. **Introduction:** In this exposition, the notion of linear hyperdoctrine is revisited through the study of categories of comodules indexed by coalgebras (Paré - Grunenfelder). Linear Hyperdoctrines

A C-indexed category Φ is by definition a pseudo-functor

 $\Phi: \mathcal{C}^{op} \to \mathbf{Cat}$

The category C is referred as the *base* of the *C*-*indexed category* Φ and for each $C \in C$ the category $\Phi(C)$ is called the *fibre* of Φ at C.

Notation: $\Phi(-) = (-)^*$

Therefore it consists of:

- categories $\Phi(C)$ for each $C \in \mathcal{C}$,
- functors $\Phi(f)$ for each morphism $f: J \to I$ of \mathcal{C} ,
- natural isomorphism $\alpha_{g,f} : \Phi(g)\Phi(f) \Rightarrow \Phi(fg)$ for every morphism $f : J \to I$, $g : K \to J$ in C
- natural isomorphism $\beta : \Phi(id_C) \to id_{\Phi(C)}$ for every $C \in \mathcal{C}$.

These natural isomorphisms need to satisfy some obvious coherence conditions. if $f: J \to I$, $g: K \to J$ and $h: M \to K$ then

$$\begin{array}{c|c} \Phi(h)\Phi(g)\Phi(f) & \xrightarrow{\mathbf{1}_{h}\alpha_{g,f}} & \Phi(h)\Phi(fg) \\ & & & & & \\ \alpha_{h,g}\mathbf{1}_{f} \\ & & & & & \\ \Phi(gh)\Phi(f) & \xrightarrow{\alpha_{gh,f}} & \Phi(fgh) \end{array}$$

where $\alpha_{g,f} : \Phi(g)\Phi(f) \Rightarrow \Phi(fg)$ is a natural isomorphism.

And if $f: J \to I$ then

$$\alpha_{f,id} = \mathbf{1}_f \beta : \Phi(f) \Phi(id) \to \Phi(f) id_{\Phi(C)}$$

where $\beta : \Phi(id_C) \Rightarrow id_{\Phi(C)}$ is a natural isomorphism.

Definition 1. A *C*-indexed functor $F : \Phi \to \Psi$ of *C*-indexed categories consists of functors: $F(C) : \Phi(C) \to \Psi(C)$ for every $C \in C$, such that for each $f : D \to C$, $\Psi(f)F(C) \cong F(D)\Phi(f)$ i.e., there is a natural isomorphism $\gamma_f : \Psi(f)F(C) \Rightarrow F(D)\Phi(f)$ for each f.

subject to some coherence condition.

Also there is the notion of *indexed natural transformation*.

Two basic examples. Given a category C:

- Φ : Set^{op} \rightarrow Cat, $\Phi(I) = C^{I}$ for $\alpha : J \rightarrow I$ define $\Phi(\alpha)$ as follows: if $\{A_i\}_{i \in I} \in C^{I}$ then $\Phi(\alpha)(\{A_i\}_{i \in I}) = \{A_{\alpha(j)}\}_{j \in J}$
- a functor $F : \mathcal{C} \to \mathcal{D}$ between categories define an indexed functor: $F(I) : \Phi(I) \to \Psi(I)$ by $F(I)(\{A_i\}_{i \in I}) = \{F(A_i)\}_{i \in I}$.

Given a category \mathcal{C} :

• $\Phi(I) = C/I$ and $\Phi(\alpha) : C/I \to C/J$ is given by the pullback:

$$\begin{array}{c|c} P \longrightarrow A \\ \Phi(\alpha)(a) \middle| & & \middle| a \\ J \longrightarrow I \end{array}$$

Definition 2. A *linear hyperdoctrine* is specified by the following data:

- a category \mathcal{B} with binary product and terminal object (also a C.C.C.) where there is an object U which generates all other objects by finite products, i.e., for every object $B \in \mathcal{B}$ there is a $n \in \mathbb{N}$ with $B = U^n$ (object=Types, morphism=terms)
- A \mathcal{B} -indexed category, $\Phi : \mathcal{B}^{op} \to \mathcal{L}$, where \mathcal{L} is the category of intuitionistic linear categories. (object $\phi \in \Phi(A)$ =attributes of type A, morphisms $f \in \Phi(A)$ = deductions).

- For each object $I \in \mathcal{B}$ we have functors $\exists_I, \forall_I : \Phi(I \times U) \rightarrow \Phi(I)$ which are left, right adjoint to the functor $\Phi(\pi_I) : \Phi(I) \rightarrow \Phi(I \times U)$, i.e., $\exists_I \dashv \Phi(\pi_I) \dashv \forall_I$. Moreover, given any morphism $f : J \rightarrow I$ in \mathcal{B} the following diagram

conmutes. This last requirement is called *Beck-Chevalley* condition.

Linear Categories

Definition 3. A monoidal category, also often called *tensor* category, is a category \mathcal{V} with an identity object $I \in \mathcal{V}$ together with a bifunctor $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ and natural isomorphisms $\rho : A \otimes I \stackrel{\cong}{\to} A$, $\lambda : I \otimes A \stackrel{\cong}{\to} A, \alpha : A \otimes (B \otimes C) \stackrel{\cong}{\to} (A \otimes B) \otimes C$, satisfying the following coherence commutativity axioms:

and

Definition 4. A symmetric monoidal category consists of a monoidal category $(\mathcal{V}, \otimes, I, \alpha, \rho, \lambda)$ with a choosen natural isomorphism σ : $A \otimes B \xrightarrow{\cong} B \otimes A$, called symmetry, which satisfies the following coherence axioms:

and

$$\begin{array}{c} A \otimes (B \otimes C) \xrightarrow{\alpha} (A \otimes B) \otimes C \xrightarrow{\sigma} C \otimes (A \otimes B) \\ & \downarrow^{1 \otimes \sigma} & \downarrow^{\alpha} \\ A \otimes (C \otimes B) \xrightarrow{\alpha} (A \otimes C) \otimes B \xrightarrow{\sigma \otimes 1} (C \otimes A) \otimes B \end{array}$$

commute.

Definition 5. A *closed* monoidal category is a monoidal category \mathcal{V} for which each functor $-\otimes B : \mathcal{V} \to \mathcal{V}$ has a right adjoint $[B, -] : \mathcal{V} \to \mathcal{V}$:

 $\mathcal{V}(A \otimes B, C) \cong \mathcal{V}(A, [B, C])$

Definition 6. A monoidal functor $(F, m_{A,B}, m_I)$ between monoidal categories $(\mathcal{V}, \otimes, I, \alpha, \rho, \lambda)$ and $(\mathcal{W}, \otimes', I', \alpha', \rho', \lambda')$ is a functor F: $\mathcal{V} \to \mathcal{W}$ equipped with:

- morphisms $m_{A,B}$: $F(A)\otimes'F(B) \to F(A\otimes B)$ natural in A and B ,
- for the units morphism $m_I: I' \to F(I)$

which satisfy the following coherence axioms:

$$\begin{array}{cccc} FA \otimes' I' \xrightarrow{\rho'} FA & I' \otimes' FA \xrightarrow{\lambda'} FA \\ 1 \otimes' m & & F\rho & & & & & & & \\ FA \otimes' FI \overrightarrow{m} F(A \otimes I) & & & FI \otimes' FA \overrightarrow{m} F(I \otimes A) \end{array}$$

A monoidal functor is *strong* when m_I and for every A and B $m_{A,B}$ are isomorphisms. It is said to be *strict* when all the $m_{A,B}$ and m_I are identities.

Definition 7. If \mathcal{V} and \mathcal{W} are symmetric monoidal categories with natural maps σ and σ' , a symmetric monoidal functor is a monoidal functor $(F, m_{A,B}, m_I)$ such that satisfies the following axiom:

Definition 8. A monoidal natural transformation θ : $(F,m) \rightarrow (G,n)$ between monoidal functors is a natural transformation θ_A : $FA \rightarrow GA$ such that the following axioms hold:

Definition 9. A monoidal adjunction

$$(\mathcal{V},\otimes,I) \overset{(F,m)}{\underset{(\overline{G},n)}{\overset{\perp}{\sqcup}}} (\mathcal{W},\otimes',I')$$

between two monoidal functors (F, m) and (G, n) consists of an adjunction $(F, G, \eta, \varepsilon)$ in which the unit $\eta : Id \Rightarrow G \circ F$ and the counit $\varepsilon : F \circ G \Rightarrow Id$ are monoidal natural tranformations.

Proposition 1 (Kelly). Let $(F, m) : C \to C'$ be a monoidal functor. Then F has a right adjoint G for which the adjunction $(F, m) \dashv (G, n)$ is monoidal if and only if F has a right adjoint $F \dashv G$ and F is strong monoidal. Since we have that $\mathcal{C}'(FA, B) \cong \mathcal{C}(A, GB)$ then there is a unique $n_{A,B}$ and n_I such that:

Then using the adjunction we check that this candidates satisfy the definition.

Definition 10 (Benton). A *linear-non-linear category* consists of:

(1) a symmetric monoidal closed category $(\mathcal{C},\otimes,I,\multimap)$

(2) a category $(\mathcal{B}, \times, 1)$ with finite product

(3) a symmetric monoidal adjunction:

$$(\mathcal{B}, imes,\mathbf{1}) \underbrace{\stackrel{(F,m)}{\perp}}_{(G,n)} (\mathcal{C},\otimes,I) \,.$$

Proposition 2. Every linear-non-linear category gives rise to a linear category. Every linear category defines a linear-non-linear category, where $(\mathcal{B}, \times, 1)$ is the category of coalgebras of the comonad $(!, \varepsilon, \delta)$.

Coalgebras and Comodules

Definition 11. A coalgebra C over a field \mathbb{K} is a vector space C over a field \mathbb{K} together with \mathbb{K} -linear maps $\Delta : C \to C \otimes C$ and $\epsilon : C \to \mathbb{K}$ satisfying the following axioms:

and

27

Let $(A, \Delta_A, \epsilon_A)$ and $(B, \Delta_B, \epsilon_B)$ be two coalgebras. A K-linear map $f : A \to B$ is a morphism of coalgebras when the following diagrams are commutative:

and

In this talk we consider cocommutative coalgebras:

where $\sigma(a \otimes b) = b \otimes a$ is the twist map. Because we want to consider a category with finite product.

The terminal object is \mathbb{K} and the unique morphism is ε .

The finite product is given by the tensor:

If $(A, \Delta_A, \epsilon_A)$ and $(B, \Delta_B, \epsilon_B)$ are two coalgebras then:

$$(A, \Delta_A, \epsilon_A) \times (B, \Delta_B, \epsilon_B) = (A \otimes B, \Delta_{A \otimes B}, \epsilon_{A \otimes B})$$

where $\Delta_{A\otimes B} = (1 \otimes \sigma \otimes 1)(\Delta_A \otimes \Delta_B)$ and $\epsilon_{A\otimes B} = \epsilon_A \otimes \epsilon_B$.

Projection maps:

$$\pi_1: (A, \Delta_A, \epsilon_A) \times (B, \Delta_B, \epsilon_B) \to (A, \Delta_A, \epsilon_A)$$

given by:

 $\pi_1 = 1 \otimes \epsilon_B$

$$\pi_2 : (A, \Delta_A, \epsilon_A) \times (B, \Delta_B, \epsilon_B) \to (A, \Delta_B, \epsilon_B)$$

given by:

 $\pi_1 = \epsilon_A \otimes 1$

and mediating arrow:

$$\langle f,g \rangle = (f \otimes g) \Delta_C$$
 if $f : C \to D$ and $f : C \to E$.

Also:

 $A \otimes - \dashv \operatorname{Hom}(A, -).$

i.e., **CoCoalg** is a cartesian closed category.

Let (D, Δ, ϵ) be a coalgebra. A subspace $S \subseteq D$ is a subcoalgebra when $\Delta(S) \subseteq S \otimes S$.

If $\{S_i\}_{i \in I}$ is a family of subcoalgebras of C then $\sum_{i \in I} S_i$ is a subcoalgebra.

Then Coalg has equalizers:

if $f: C \to D$ and $g: C \to D$ we consider the largest subcoalgebra $E \subseteq Ker(f-g)$ i.e.,

 $E = \sum_{S \subseteq Ker(f-g)} S$ where S subcoalgebra, and the inclusion map $i : E \to C$.

Therefore we have pull-backs.

If $f : A \to C$ and $g : B \to C$ then:

Definition 12. Let (C, Δ, ϵ) be a coalgebra. A right *C*-comodule M over a field \mathbb{K} is a vector space M over a field \mathbb{K} together with \mathbb{K} -linear maps $\rho : M \to M \otimes C$ satisfying the following axioms:

and

Let (M, ρ_M) and (N, ρ_N) be two comodules. A \mathbb{K} -linear map $f: M \to N$ is called a morphism of comodules if the following diagram is commutative:

Notation: \mathbf{M}^{C}

The cofree *C*-comodule:

If (C, Δ, ϵ) is a coalgebra and V a \mathbb{K} -vector space then $V \otimes C$ becomes a right C-comodule with

$$\rho = 1 \otimes \Delta : V \otimes C \to V \otimes C \otimes C$$

Cosemisimple coalgebras, completely reducible comodules

Definition 13. A coalgebra C is called *simple* if $C \neq 0$ and it has no proper subcoalgebras. A coalgebra C is called *cosemisimple* if it is a direct sum of simple subcoalgebras.

A comodule C is said to be *irreducible* if $V \neq 0$ and it has no proper subcomodules. A comodule is called *completely reducible* if V = 0 or V is a direct sum of irreducible subcomodules.

Proposition 3. • Every simple coalgebra is finite dimensional.

• Every coalgebra is sum of finite dimensional subcoalgebras.

Proposition 4. For a given coalgebra C the following assertions are equivalent:

a) C is cosemisimple

b) C is sum of simple subcoalgebras

- c) If D is any subcoalgebra of C then there exists a subcoalgebra E of C such that $C = D \oplus E$
- d) Every subcoalgebra of C is cosemisimple
- e) Every finite dimensional subcoalgebra of C is cosemisimple

- **Proposition 5.** Every irreducible comodule is finite dimensional.
 - Every comodule is sum of finite dimensional subcomodules.

Proposition 6. For a given comodule V the following assertions are equivalent:

- a) V is completely reducible
- b) V is sum of irreducible subcomodules
- c) If W is any subcomodule of V then there exists a subcomodule of C then there exists a subcomodule Z of C such that $V = W \oplus Z$
- d) Every subcomodule of V is completely reducible
- e) Every finite dimensional subcomodule of V is completely reducible

Theorem 1. Given a coalgebra C the following are equivalent:

- C is cosemisimple
- every C comodule is completly reducible

Indexed categories by coalgebras

We consider an *C*-indexed category of comodules

 $\Phi:\mathbf{Coalg}^{op}\to\mathbf{Cat}$

given by $\Phi(C) =^C \mathbf{M}$.

Notation: ${}^{C}\mathbf{M} = Vect^{C}$ the category of left *C*-comodules indexed by the coalgebra *C*.

Finite products and equalizers exist in $Vect^C$ and are those of vector spaces.

Let $\phi : D \to C$ be a morphism of coalgebras, we consider the functor $\phi^* : Vect^C \to Vect^D$ determined by the following equalizer:

i.e., $\phi^*(M,\rho) = E$ on object and

by the universal property of equalizer on arrows, in which all the coactions considered above come from the cofree comodule structure except for E which has the restriction of the cofree coaction of $D \otimes M$.

So we define a pseudofunctor: Φ : Coalg^{op} \rightarrow Cat given by $\Phi(C) = Vect^C$, $\Phi(\phi) = \phi^*$ i.e., $(\phi\psi)^* \cong \psi^*\phi^*$, $\mathbf{1}_C^* \cong \mathbf{1}_{Vect^C}$.

For each $\phi : C \to D$, $\phi^* : Vect^D \to Vect^C$ has a left adjoint $\sum_{\phi} \vdash \phi^*$; $\sum_{\phi} : Vect^C \to Vect^D$ given by $\sum_{\phi} (V, v) = (V, (\phi \otimes id_V)v)$.

$$V \xrightarrow{v} C \otimes V \xrightarrow{\phi \otimes id_V} D \otimes V.$$

Proposition 7. Let $\pi_C : D \otimes C \to C$, $\pi_D : D \otimes C \to D$ be projection maps in the category Coalg. Then $\pi_C^* : Vect^C \to Vect^{D \otimes C}$ and $\pi_D^* : Vect^D \to Vect^{D \otimes C}$ preserves coequalizers.

Also we have explicit formulas:

 $\pi^*_C(M,\rho) = (D \otimes M,\rho')$

where ρ' is

 $D \otimes M \xrightarrow{\Delta \otimes \rho} D \otimes D \otimes C \otimes M \xrightarrow{\sigma} D \otimes C \otimes D \otimes M$

and analogously π_C^* .

For every $\phi : C \to D$ the functor $\phi^* : Vect^D \to Vect^C$ preserves coproducts, i.e.,

$$\phi^*(\oplus_{i\in I}(C_i,\rho_i)) = \oplus_{i\in I}\phi^*(C_i,\rho_i)$$

for arbitrary I but in general do not preserve coequalizers.

The last proposition implies that

$$\pi^*_C \quad \pi^*_D$$

preserves colimits and by special adjoint functor theorem has a right adjoint.

$Vect^C$ symmetric monoidal closed category

Lemma 1. If C is a cocommutative coalgebra, the category $Vect^C$ is a symmetric monoidal category.

The tensor in $Vect^C$ is defined as follows:

take C-comodules (V, v), (W, w) and consider the following equalizer:

$$E \xrightarrow{e} V \otimes W \xrightarrow{id_V \otimes w} V \otimes C \otimes W \tag{1}$$

i.e., $E = (V, v) \otimes^{C} (W, w)$ and the coaction is given by the universal property where

 $(V \otimes W, v \otimes id_W)$ and $(V \otimes C \otimes W, v \otimes id_C \otimes id_W)$.

since $C \otimes -$ preserves equalizers and the unit is given by

 $I = (C, \Delta_C).$

Lemma 2. If C is a cocommutative coalgebra, the monoidal category ($Vect^C, \otimes^C, C$) is closed if and only if C is cosemisimple.

$Coalg^C$ cartesian category

The category $Coalg^C = Coalg/C$ (slice category) defined as follows:

- objects are morphisms of coalgebras with cocommutative codomain in C; we denote by (ϕ) the morphism of coalgebras $\phi: D \to C$ when it is thought as an object in $Coalg^C$,
- if φ : D → C and ψ : E → C are morphisms of coalgebras, morphisms f : (φ) → (ψ) correspond to coalgebra morphisms f : D → E such that ψ ∘ f = φ;

Lemma 3. If C is a cocommutative coalgebra, the category $Coalg^C$ is a cartesian category.

Proof. The existence of finite products and equalizers in Coalg guarantees the existence of pullbacks in this category, that induce a cartesian structure on $Coalg^C$.

We have that $(\phi_1) \times (\phi_2) = (\phi)$, where ϕ is defined by the following pullback in *Coalg*:

Moreover, the unit object is (id_C) .

Monoidal adjunction: $(U^C, m) \dashv (R^C, n)$

The functor U^C : $Coalg^C \to Vect^C$ takes the object (ϕ) , i.e., $\phi : D \to C$ to the comodule (D,d) where $d : D \to D \otimes C$ is the coaction defined by $d = (\phi \otimes id_D) \circ \Delta_D$ admits a right adjoint: $U^C \dashv R^C$. **Lemma 4.** The functor U^C : $Coalg^C \rightarrow Vect^C$ is strong monoidal.

Proof. It is clear that $U^C((id_C)) = (C, \Delta)$, so U^C preserves the units.

We will prove now that

$$U^{C}((\phi) \times (\psi)) = U^{C}(\phi) \otimes^{C} U^{C}(\psi)$$

Take $\phi_1 : (D_1, \Delta_1, \varepsilon_1) \to (C, \Delta, \varepsilon)$, and

 $\phi_2: (D_2, \Delta_2, \varepsilon_2) \to (C, \Delta_C, \varepsilon_C)$ two morphisms of coalgebras.

We recall the diagram defining the product $(\phi) = (\phi_1) \times (\phi_2)$:

Note that $U^C(D_i) = (D_i, d_i)$ for i = 1, 2 and $U^C(D) = (D, d)$ where $d = (\phi \otimes id_D) \circ \Delta$, $d_1 = (\phi_1 \otimes id_{D_1}) \circ \Delta_1$, $d_2 = (\phi_2 \otimes id_{D_2}) \circ \Delta_2$.

We will prove that $(D,d) = (D_1,d_1) \otimes^C (D_2,d_2)$, in other words that *D*-with a suitable morphism *d*- is the equalizer in *Vect* of the following parallel pair and that *d* is effectively $\rho_{D_1 \otimes^C D_2}$ (with the notation of Lemma 2), i.e.,

$$D \xrightarrow{e} D_1 \otimes D_2 \xrightarrow[\tau d_2 \otimes id_{D_2}]{}^{id_{D_1} \otimes d_1} D_1 \otimes C \otimes D_2$$
(3)

63

Idea of the proof:

1-First observe that the parallel pair above can be though in *Coalg.* We prove first that the coalgebra *D*-with the morphism of coalgebras $(u \otimes v) \circ \Delta : D \to D_1 \otimes D_2$ is the equalizer in *Coalg.*

2-Now, as U preserves equalizers of the coreflexive pairs, we have that $\{D, (u \otimes v)\Delta\}$ is the equalizer in *Vect* of the parallel pair above. (Note that the pair is coreflexive for $id_{D_1} \otimes \varepsilon_C \otimes_{id_{D_2}}$ is a common retraction in *Coalg*.)

3-It is easy to prove that d is the desired coaction, i.e. that

the following diagram commutes:

 ϕ^* has left adjoint \sum_{ϕ} . But in general is not the case that ϕ^* and $-\otimes^C A$ preserve coequalizers.

We want to study conditions to obtain right adjoints:

$$\phi^* \dashv \Pi_{\phi} \text{ and } - \otimes^C A \dashv hom^C(A, -)$$

Definition 14. we said that a *C*-comodule (V, ρ) is *coflat* when the functor

$$-\otimes^{C} V : Vect^{C} \rightarrow Vect^{C}$$

preserves epis.

Proposition 8. Let (V, ρ) be a *C*-comodule. The following propositions are equivalent:

- (V, ρ) is coflat.
- $V \otimes^C : Vect^C \to Vect^C$ has a right adjoint $hom^C(V, -) : Vect^C \to Vect^C$.

Proposition 9. Let $\phi: V \to W$ be a coalgebra map. The following propositions are equivalent:

• $(V, (id \otimes \phi)\Delta)$ C-comodule is coflat.

•
$$\phi^* : Vect^W \to Vect^V$$
 has a right adjoint $\Pi_{\phi} : Vect^V \to Vect^W$.

Beck condition. It turns out that since we have $\sum_{\phi} \dashv \phi^* \dashv \Pi_{\phi}$ and \sum_{ϕ} satisfies that condition then Π_{ϕ} also satisfies Beck condition whenever it exists:

is a pullback then

commutes.