Linear Hyperdoctrines and comodules.

Mariana Haim, Octavio Malherbe
July 2016.
Realizabilidad en Uruguay
Piriápolis.

Introduction: In this exposition, the notion of linear hyperdoctrine is revisited through the study of categories of comodules indexed by coalgebras (Paré - Grunenfelder).

Linear Hyperdoctrines

A \mathcal{C}-indexed category Φ is by definition a pseudo-functor

$$
\Phi: \mathcal{C}^{o p} \rightarrow \mathbf{C a t}
$$

The category \mathcal{C} is referred as the base of the \mathcal{C}-indexed category Φ and for each $C \in \mathcal{C}$ the category $\Phi(C)$ is called the fibre of Φ at C.

Notation: $\Phi(-)=(-)^{*}$

Therefore it consists of:

- categories $\Phi(C)$ for each $C \in \mathcal{C}$,
- functors $\Phi(f)$ for each morphism $f: J \rightarrow I$ of \mathcal{C},
- natural isomorphism $\alpha_{g, f}: \Phi(g) \Phi(f) \Rightarrow \Phi(f g)$ for every morphism $f: J \rightarrow I, g: K \rightarrow J$ in \mathcal{C}
- natural isomorphism $\beta: \Phi\left(i d_{C}\right) \rightarrow i d_{\Phi(C)}$ for every $C \in \mathcal{C}$.

These natural isomorphisms need to satisfy some obvious coherence conditions.
if $f: J \rightarrow I, g: K \rightarrow J$ and $h: M \rightarrow K$ then

where $\alpha_{g, f}: \Phi(g) \Phi(f) \Rightarrow \Phi(f g)$ is a natural isomorphism.

And if $f: J \rightarrow I$ then

$$
\alpha_{f, i d}=1_{f} \beta: \Phi(f) \Phi(i d) \rightarrow \Phi(f) i d_{\Phi(C)}
$$

where $\beta: \Phi\left(i d_{C}\right) \Rightarrow i d_{\Phi(C)}$ is a natural isomorphism.

Definition 1. A \mathcal{C}-indexed functor $F: \Phi \rightarrow \Psi$ of \mathcal{C}-indexed categories consists of functors: $F(C): \Phi(C) \rightarrow \Psi(C)$ for every $C \in \mathcal{C}$, such that for each $f: D \rightarrow C, \Psi(f) F(C) \cong F(D) \Phi(f)$ i.e., there is a natural isomorphism $\gamma_{f}: \Psi(f) F(C) \Rightarrow F(D) \Phi(f)$ for each f.

subject to some coherence condition.

Also there is the notion of indexed natural transformation.

Two basic examples. Given a category \mathcal{C} :

- $\Phi: \operatorname{Set}^{o p} \rightarrow$ Cat, $\Phi(I)=\mathcal{C}^{I}$ for $\alpha: J \rightarrow I$ define $\Phi(\alpha)$ as follows: if $\left\{A_{i}\right\}_{i \in I} \in \mathcal{C}^{I}$ then $\Phi(\alpha)\left(\left\{A_{i}\right\}_{i \in I}\right)=\left\{A_{\alpha(j)}\right\}_{j \in J}$
- a functor $F: \mathcal{C} \rightarrow \mathcal{D}$ between categories define an indexed functor: $F(I): \Phi(I) \rightarrow \Psi(I)$ by $F(I)\left(\left\{A_{i}\right\}_{i \in I}\right)=\left\{F\left(A_{i}\right)\right\}_{i \in I}$.

Given a category \mathcal{C} :

- $\Phi(I)=\mathcal{C} / I$ and $\Phi(\alpha): \mathcal{C} / I \rightarrow \mathcal{C} / J$ is given by the pullback:

Definition 2. A linear hyperdoctrine is specified by the following data:

- a category \mathcal{B} with binary product and terminal object (also a C.C.C.) where there is an object U which generates all other objects by finite products, i.e., for every object $B \in \mathcal{B}$ there is a $n \in \mathbb{N}$ with $B=U^{n}$ (object=Types, morphism=terms)
- A \mathcal{B}-indexed category, $\Phi: \mathcal{B}^{o p} \rightarrow \mathcal{L}$, where \mathcal{L} is the category of intuitionistic linear categories. (object $\phi \in \Phi(A)=$ attributes of type A , morphisms $f \in \Phi(A)=$ deductions).
- For each object $I \in \mathcal{B}$ we have functors $\exists_{I}, \forall_{I}: \Phi(I \times U) \rightarrow$ $\Phi(I)$ which are left, right adjoint to the functor $\Phi\left(\pi_{I}\right)$: $\Phi(I) \rightarrow \Phi(I \times U)$, i.e., $\exists_{I} \dashv \Phi\left(\pi_{I}\right) \dashv \forall_{I}$. Moreover, given any morphism $f: J \rightarrow I$ in \mathcal{B} the following diagram

conmutes. This last requirement is called Beck-Chevalley condition.

Linear Categories

Definition 3. A monoidal category, also often called tensor category, is a category \mathcal{V} with an identity object $I \in \mathcal{V}$ together with a bifunctor $\otimes: \mathcal{V} \times \mathcal{V} \rightarrow \mathcal{V}$ and natural isomorphisms $\rho: A \otimes I \xlongequal{\rightrightarrows} A$, $\lambda: I \otimes A \xlongequal{\cong} A, \alpha: A \otimes(B \otimes C) \xlongequal{\leftrightharpoons}(A \otimes B) \otimes C$, satisfying the following coherence commutativity axioms:

$$
A \otimes(I \otimes B) \xrightarrow[1 \otimes \lambda]{A \otimes B} \underset{\rho \otimes 1}{\alpha}(A \otimes I) \otimes B
$$

and

Definition 4. A symmetric monoidal category consists of a monoidal category $(\mathcal{V}, \otimes, I, \alpha, \rho, \lambda)$ with a choosen natural isomorphism σ : $A \otimes B \xlongequal{\cong} B \otimes A$, called symmetry, which satisfies the following coherence axioms:

and

commute.

Definition 5. A closed monoidal category is a monoidal category \mathcal{V} for which each functor $-\otimes B: \mathcal{V} \rightarrow \mathcal{V}$ has a right adjoint $[B,-]: \mathcal{V} \rightarrow \mathcal{V}:$

$$
\mathcal{V}(A \otimes B, C) \cong \mathcal{V}(A,[B, C])
$$

Definition 6. A monoidal functor ($F, m_{A, B}, m_{I}$) between monoidal categories $(\mathcal{V}, \otimes, I, \alpha, \rho, \lambda)$ and ($\left.\mathcal{W}, \otimes^{\prime}, I^{\prime}, \alpha^{\prime}, \rho^{\prime}, \lambda^{\prime}\right)$ is a functor F : $\mathcal{V} \rightarrow \mathcal{W}$ equipped with:

- morphisms $m_{A, B}: F(A) \otimes^{\prime} F(B) \rightarrow F(A \otimes B)$ natural in A and B,
- for the units morphism $m_{I}: I^{\prime} \rightarrow F(I)$
which satisfy the following coherence axioms:

A monoidal functor is strong when m_{I} and for every A and B $m_{A, B}$ are isomorphisms. It is said to be strict when all the $m_{A, B}$ and m_{I} are identities.

Definition 7. If \mathcal{V} and \mathcal{W} are symmetric monoidal categories with natural maps σ and σ^{\prime}, a symmetric monoidal functor is a monoidal functor ($F, m_{A, B}, m_{I}$) such that satisfies the following axiom:

Definition 8. A monoidal natural transformation $\theta:(F, m) \rightarrow$ (G, n) between monoidal functors is a natural transformation θ_{A} : $F A \rightarrow G A$ such that the following axioms hold:

Definition 9. A monoidal adjunction

$$
(\mathcal{V}, \otimes, I) \underset{\left(\underset{(G, n)}{\stackrel{(F, m)}{\perp}}\left(\mathcal{W}, \otimes^{\prime}, I^{\prime}\right)\right.}{ }
$$

between two monoidal functors (F, m) and (G, n) consists of an adjunction (F, G, η, ε) in which the unit $\eta: I d \Rightarrow G \circ F$ and the counit $\varepsilon: F \circ G \Rightarrow I d$ are monoidal natural tranformations.

Proposition 1 (Kelly). Let (F, m) : $\mathcal{C} \rightarrow \mathcal{C}^{\prime}$ be a monoidal functor. Then F has a right adjoint G for which the adjunction $(F, m) \dashv$ (G, n) is monoidal if and only if F has a right adjoint $F \dashv G$ and F is strong monoidal.

Since we have that $\mathcal{C}^{\prime}(F A, B) \cong \mathcal{C}(A, G B)$ then there is a unique $n_{A, B}$ and n_{I} such that:

Then using the adjunction we check that this candidates satisfy the definition.

Definition 10 (Benton). A linear-non-linear category consists of:
(1) a symmetric monoidal closed category ($\mathcal{C}, \otimes, I, \rightarrow)$
(2) a category $(\mathcal{B}, \times, 1)$ with finite product
(3) a symmetric monoidal adjunction:

$$
(\mathcal{B}, \times, 1) \underset{(G, n)}{\frac{(F, m)}{\perp}}(\mathcal{C}, \otimes, I)
$$

Proposition 2. Every linear-non-linear category gives rise to a linear category. Every linear category defines a linear-non-linear category, where $(\mathcal{B}, \times, 1)$ is the category of coalgebras of the comonad (!, ε, δ).

Coalgebras and Comodules

Definition 11. A coalgebra C over a field \mathbb{K} is a vector space C over a field \mathbb{K} together with \mathbb{K}-linear maps $\Delta: C \rightarrow C \otimes C$ and $\epsilon: C \rightarrow \mathbb{K}$ satisfying the following axioms:

and

Let $\left(A, \Delta_{A}, \epsilon_{A}\right)$ and ($B, \Delta_{B}, \epsilon_{B}$) be two coalgebras. A \mathbb{K}-linear map $f: A \rightarrow B$ is a morphism of coalgebras when the following diagrams are commutative:

and

In this talk we consider cocommutative coalgebras:

where $\sigma(a \otimes b)=b \otimes a$ is the twist map. Because we want to consider a category with finite product.

The terminal object is \mathbb{K} and the unique morphism is ε.

The finite product is given by the tensor:

If ($A, \Delta_{A}, \epsilon_{A}$) and ($B, \Delta_{B}, \epsilon_{B}$) are two coalgebras then:
$\left(A, \Delta_{A}, \epsilon_{A}\right) \times\left(B, \Delta_{B}, \epsilon_{B}\right)=\left(A \otimes B, \Delta_{A \otimes B}, \epsilon_{A \otimes B}\right)$
where $\Delta_{A \otimes B}=(1 \otimes \sigma \otimes 1)\left(\Delta_{A} \otimes \Delta_{B}\right)$ and $\epsilon_{A \otimes B}=\epsilon_{A} \otimes \epsilon_{B}$.

Projection maps:

$\pi_{1}:\left(A, \Delta_{A}, \epsilon_{A}\right) \times\left(B, \Delta_{B}, \epsilon_{B}\right) \rightarrow\left(A, \Delta_{A}, \epsilon_{A}\right)$
given by:
$\pi_{1}=1 \otimes \epsilon_{B}$
$\pi_{2}:\left(A, \Delta_{A}, \epsilon_{A}\right) \times\left(B, \Delta_{B}, \epsilon_{B}\right) \rightarrow\left(A, \Delta_{B}, \epsilon_{B}\right)$
given by:
$\pi_{1}=\epsilon_{A} \otimes 1$
and mediating arrow:
$<f, g>=(f \otimes g) \Delta_{C}$ if $f: C \rightarrow D$ and $f: C \rightarrow E$.

> Also:
> $A \otimes-\dashv \operatorname{Hom}(A,-)$
> i.e., CoCoalg is a cartesian closed category.

Let (D, Δ, ϵ) be a coalgebra. A subspace $S \subseteq D$ is a subcoalgebra when $\Delta(S) \subseteq S \otimes S$.

If $\left\{S_{i}\right\}_{i \in I}$ is a family of subcoalgebras of C then $\sum_{i \in I} S_{i}$ is a subcoalgebra.

Then Coalg has equalizers:
if $f: C \rightarrow D$ and $g: C \rightarrow D$ we consider the largest subcoalgebra $E \subseteq \operatorname{Ker}(f-g)$ i.e.,
$E=\sum_{S \subseteq \operatorname{Ker}(f-g)} S$ where S subcoalgebra, and the inclusion map $i: E \rightarrow \bar{C}$.

Therefore we have pull-backs.
If $f: A \rightarrow C$ and $g: B \rightarrow C$ then:

Definition 12. Let (C, Δ, ϵ) be a coalgebra. A right C-comodule M over a field \mathbb{K} is a vector space M over a field \mathbb{K} together with \mathbb{K}-linear maps $\rho: M \rightarrow M \otimes C$ satisfying the following axioms:

and

Let $\left(M, \rho_{M}\right)$ and (N, ρ_{N}) be two comodules. A \mathbb{K}-linear map $f: M \rightarrow N$ is called a morphism of comodules if the following diagram is commutative:

Notation: M^{C}

The cofree C-comodule:

If (C, Δ, ϵ) is a coalgebra and V a \mathbb{K}-vector space then $V \otimes C$ becomes a right C-comodule with

$$
\rho=1 \otimes \Delta: V \otimes C \rightarrow V \otimes C \otimes C
$$

Cosemisimple coalgebras, completely reducible comodules

Definition 13. A coalgebra C is called simple if $C \neq 0$ and it has no proper subcoalgebras. A coalgebra C is called cosemisimple if it is a direct sum of simple subcoalgebras.

A comodule C is said to be irreducible if $V \neq 0$ and it has no proper subcomodules. A comodule is called completely reducible if $V=0$ or V is a direct sum of irreducible subcomodules.

Proposition 3. - Every simple coalgebra is finite dimensional.

- Every coalgebra is sum of finite dimensional subcoalgebras.

Proposition 4. For a given coalgebra C the following assertions are equivalent:
a) C is cosemisimple
b) C is sum of simple subcoalgebras
c) If D is any subcoalgebra of C then there exists a subcoalgebra E of C such that $C=D \oplus E$
d) Every subcoalgebra of C is cosemisimple
e) Every finite dimensional subcoalgebra of C is cosemisimple

Proposition 5. • Every irreducible comodule is finite dimensional.

- Every comodule is sum of finite dimensional subcomodules.

Proposition 6. For a given comodule V the following assertions are equivalent:
a) V is completely reducible
b) V is sum of irreducible subcomodules
c) If W is any subcomodule of V then there exists a subcomodule Z of C such that $V=W \oplus Z$
d) Every subcomodule of V is completely reducible
e) Every finite dimensional subcomodule of V is completely reducible

Theorem 1. Given a coalgebra C the following are equivalent:

- C is cosemisimple
- every C comodule is completly reducible

Indexed categories by coalgebras

We consider an C-indexed category of comodules

$$
\Phi: \mathrm{Coalg}^{o p} \rightarrow \mathrm{Cat}
$$

given by $\Phi(C)={ }^{C} \mathrm{M}$.
Notation: ${ }^{C} \mathrm{M}=V e c t{ }^{C}$ the category of left C-comodules indexed by the coalgebra C.

Finite products and equalizers exist in $V e c t{ }^{C}$ and are those of vector spaces.

Let $\phi: D \rightarrow C$ be a morphism of coalgebras, we consider the functor $\phi^{*}: V e c t{ }^{C} \rightarrow V e c t{ }^{D}$ determined by the following equalizer:

i.e., $\phi^{*}(M, \rho)=E$ on object and
by the universal property of equalizer on arrows, in which all the coactions considered above come from the cofree comodule structure except for E which has the restriction of the cofree coaction of $D \otimes M$.

So we define a pseudofunctor: Φ : Coalg ${ }^{o p} \rightarrow$ Cat given by $\Phi(C)=V e c t{ }^{C}, \Phi(\phi)=\phi^{*}$ i.e., $(\phi \psi)^{*} \cong \psi^{*} \phi^{*}, 1_{C}^{*} \cong 1_{V e c t} C$.

For each $\phi: C \rightarrow D, \phi^{*}: V e c t{ }^{D} \rightarrow V e c t{ }^{C}$ has a left adjoint $\sum_{\phi} \vdash \phi^{*} ; \quad \sum_{\phi}: V e c t{ }^{C} \rightarrow V e c t t^{D}$ given by $\sum_{\phi}(V, v)=\left(V,\left(\phi \otimes i d_{V}\right) v\right)$.

$$
V \xrightarrow{v} C \otimes V \xrightarrow{\phi \otimes i d_{V}} D \otimes V .
$$

Proposition 7. Let $\pi_{C}: D \otimes C \rightarrow C, \pi_{D}: D \otimes C \rightarrow D$ be projection maps in the category Coalg. Then $\pi_{C}^{*}: V e c t^{C} \rightarrow V e c t{ }^{D \otimes C}$ and $\pi_{D}^{*}: V e c t{ }^{D} \rightarrow V e c t^{D \otimes C}$ preserves coequalizers.

Also we have explicit formulas:
$\pi_{C}^{*}(M, \rho)=\left(D \otimes M, \rho^{\prime}\right)$
where ρ^{\prime} is
$D \otimes M \xrightarrow{\Delta \otimes \rho} D \otimes D \otimes C \otimes M \xrightarrow{\sigma} D \otimes C \otimes D \otimes M$
and analogously π_{C}^{*}.

For every $\phi: C \rightarrow D$ the functor $\phi^{*}: V e c t ~{ }^{D} \rightarrow$ Vect ${ }^{C}$ preserves coproducts, i.e.,

$$
\phi^{*}\left(\oplus_{i \in I}\left(C_{i}, \rho_{i}\right)\right)=\oplus_{i \in I} \phi^{*}\left(C_{i}, \rho_{i}\right)
$$

for arbitrary I but in general do not preserve coequalizers.

The last proposition implies that

$$
\pi_{C}^{*} \quad \pi_{D}^{*}
$$

preserves colimits and by special adjoint functor theorem has a right adjoint.

$V e c t{ }^{C}$ symmetric monoidal closed category

Lemma 1. If C is a cocommutative coalgebra, the category Vect ${ }^{C}$ is a symmetric monoidal category.

The tensor in $V e c t{ }^{C}$ is defined as follows:
take C-comodules $(V, v),(W, w)$ and consider the following equalizer:

$$
\begin{equation*}
E \xrightarrow{e} V \otimes W \xrightarrow[\tau v \otimes i d_{W}]{\stackrel{i d_{V} \otimes w}{\longrightarrow}} V \otimes C \otimes W \tag{1}
\end{equation*}
$$

i.e., $E=(V, v) \otimes^{C}(W, w)$ and the coaction is given by the universal property where
$\left(V \otimes W, v \otimes i d_{W}\right)$ and $\left(V \otimes C \otimes W, v \otimes i d_{C} \otimes i d_{W}\right)$.

since $C \otimes$ - preserves equalizers and the unit is given by

$$
I=\left(C, \Delta_{C}\right)
$$

Lemma 2. If C is a cocommutative coalgebra, the monoidal category (Vect ${ }^{C}, \otimes^{C}, C$) is closed if and only if C is cosemisimple.

Coalg ${ }^{C}$ cartesian category

The category Coalg ${ }^{C}=\operatorname{Coalg} / C$ (slice category) defined as follows:

- objects are morphisms of coalgebras with cocommutative codomain in C; we denote by (ϕ) the morphism of coalgebras $\phi: D \rightarrow C$ when it is thought as an object in $\operatorname{Coalg}{ }^{C}$,
- if $\phi: D \rightarrow C$ and $\psi: E \rightarrow C$ are morphisms of coalgebras, morphisms $f:(\phi) \rightarrow(\psi)$ correspond to coalgebra morphisms $f: D \rightarrow E$ such that $\psi \circ f=\phi$;

Lemma 3. If C is a cocommutative coalgebra, the category Coalg ${ }^{C}$ is a cartesian category.

Proof. The existence of finite products and equalizers in Coalg guarantees the existence of pullbacks in this category, that induce a cartesian structure on Coalg^{C}.
We have that $\left(\phi_{1}\right) \times\left(\phi_{2}\right)=(\phi)$, where ϕ is defined by the following pullback in Coalg:

Moreover, the unit object is $\left(i d_{C}\right)$.

Monoidal adjunction: $\left(U^{C}, m\right) \dashv\left(R^{C}, n\right)$

The functor $U^{C}:$ Coalg $^{C} \rightarrow$ Vect C takes the object (ϕ), i.e., $\phi: D \rightarrow C$ to the comodule (D, d) where $d: D \rightarrow D \otimes C$ is the coaction defined by $d=\left(\phi \otimes i d_{D}\right) \circ \Delta_{D}$ admits a right adjoint: $U^{C} \dashv R^{C}$.

Lemma 4. The functor $U^{C}:$ Coalg ${ }^{C} \rightarrow V e c t^{C}$ is strong monoidal.

Proof. It is clear that $U^{C}\left(\left(i d_{C}\right)\right)=(C, \Delta)$, so U^{C} preserves the units.

We will prove now that

$$
U^{C}((\phi) \times(\psi))=U^{C}(\phi) \otimes^{C} U^{C}(\psi)
$$

Take $\phi_{1}:\left(D_{1}, \Delta_{1}, \varepsilon_{1}\right) \rightarrow(C, \Delta, \varepsilon)$, and
$\phi_{2}:\left(D_{2}, \Delta_{2}, \varepsilon_{2}\right) \rightarrow\left(C, \Delta_{C}, \varepsilon_{C}\right)$ two morphisms of coalgebras.

We recall the diagram defining the product $(\phi)=\left(\phi_{1}\right) \times\left(\phi_{2}\right)$:

Note that $U^{C}\left(D_{i}\right)=\left(D_{i}, d_{i}\right)$ for $i=1,2$ and $U^{C}(D)=(D, d)$ where $d=\left(\phi \otimes i d_{D}\right) \circ \Delta, d_{1}=\left(\phi_{1} \otimes i d_{D_{1}}\right) \circ \Delta_{1}, d_{2}=\left(\phi_{2} \otimes i d_{D_{2}}\right) \circ \Delta_{2}$.

We will prove that $(D, d)=\left(D_{1}, d_{1}\right) \otimes^{C}\left(D_{2}, d_{2}\right)$, in other words that D-with a suitable morphism d - is the equalizer in Vect of the following parallel pair and that d is effectively $\rho_{D_{1} \otimes^{C} D_{2}}$ (with the notation of Lemma 2), i.e.,

$$
\begin{equation*}
D \xrightarrow{e} D_{1} \otimes D_{2} \stackrel{i d_{D_{1}} \otimes d_{1}}{\stackrel{i d_{2} \otimes i d_{D_{2}}}{\longrightarrow}} D_{1} \otimes C \otimes D_{2} \tag{3}
\end{equation*}
$$

Idea of the proof:

1-First observe that the parallel pair above can be though in Coalg. We prove first that the coalgebra D-with the morphism of coalgebras $(u \otimes v) \circ \Delta: D \rightarrow D_{1} \otimes D_{2}$ is the equalizer in Coalg.

2-Now, as U preserves equalizers of the coreflexive pairs, we have that $\{D,(u \otimes v) \Delta\}$ is the equalizer in Vect of the parallel pair above. (Note that the pair is coreflexive for $i d_{D_{1}} \otimes \varepsilon_{C} \otimes_{i d_{D_{2}}}$ is a common retraction in Coalg.)

3-It is easy to prove that d is the desired coaction, i.e. that
the following diagram commutes:

ϕ^{*} has left adjoint \sum_{ϕ}. But in general is not the case that ϕ^{*} and $-\otimes^{C} A$ preserve coequalizers.

We want to study conditions to obtain right adjoints:
$\phi^{*} \dashv \Pi_{\phi}$ and $-\otimes^{C} A \dashv \operatorname{hom}^{C}(A,-)$

Definition 14. we said that a C-comodule (V, ρ) is coflat when the functor

$$
-\otimes^{C} V: V e c t^{C} \rightarrow V e c t^{C}
$$

preserves epis.

Proposition 8. Let (V, ρ) be a C-comodule. The following propositions are equivalent:

- (V, ρ) is coflat.
- $V \otimes^{C}-: V e c t{ }^{C} \rightarrow V e c t{ }^{C}$ has a right adjoint $\operatorname{hom}^{C}(V,-):$ $V e c t^{C} \rightarrow V e c t t^{C}$.

Proposition 9. Let $\phi: V \rightarrow W$ be a coalgebra map. The following propositions are equivalent:

- $(V,(i d \otimes \phi) \Delta) C$-comodule is coflat.
- $\phi^{*}: V e c t^{W} \rightarrow V e c t{ }^{V}$ has a right adjoint $\Pi_{\phi}: V e c t^{V} \rightarrow V e c t^{W}$.

Beck condition. It turns out that since we have $\sum_{\phi} \dashv \phi^{*} \dashv \Pi_{\phi}$ and \sum_{ϕ} satisfies that condition then Π_{ϕ} also satisfies Beck condition whenever it exists:

is a pullback then

commutes.

